air barrier

EHH week 25: exterior siding

While most of the exterior siding is corrugated steel, there are some areas of fiber cement boards and accents of laminated wood panels as well.  The fiber cement is installed as usual with hidden nails, but for the laminated wood we chose exposed stainless steel screws.  I really like the way the different materials complement each other.

 

In order to assure that any rain that gets behind these sidings can freely flow down and away, we install them with a rain screen shim.  Coravent makes a great product for this purpose, a black plastic hollow strip that is fairly thin, impervious to water, and keeps insects out of the hidden space.

 

Just as we want to avoid having rain collect behind the siding, we want a clear air space between the steel decks and the siding, too.  Because the siding has 2 inches of foam insulation behind it, we installed steel standoffs to securely hold the deck ledger out away from the siding.

 

The exterior skin of this house is state of the art.  Its outer layer is durable materials that need no maintenance, except for infrequent painting of the fiber cement siding.  All the siding has a rain screen space behind it to allow it to dry easily.  A vapor permeable wrap keeps the rain out but allows the wall to dry if needed.  The rigid foam adds R-value and eliminates thermal bridging at the framing.  And the plywood sheathing with taped seams is a robust air barrier.

EHH week 20: air sealing

To build a net zero energy house it is essential to reduce air leakage to the bare minimum.  Doing so requires a comprehensive effort by the contractors to fill every gap between the heated inside and the outside.  Typical problem areas are at electrical outlets, light fixtures and switches, pipes and ducts, around windows and doors, and at wall intersections.  For this house, we used a combination of spray polyurethane foam and caulk to seal all these gaps.

 

During design, the architects determined the boundary of the air barrier surrounding the whole house.  At the walls and floor overhangs it is the plywood sheathing, which had all its joints covered with black butyl tape.  At the floor and foundation it is the concrete slab and walls.  And at the roof it is the sloped gypsum board ceiling, which had a dozen light fixtures hung from it that were enclosed in a special airtight plastic box.

 

To confirm air tightness, a device called a blower door is used to depressurize the interior to 50 pascals.  The blower fan is trying to suck outside air in, which can be felt by the test technician using a damp hand and an infrared camera.  A gap as small as that between two uneven pieces of wood is significant.

 

Our specs targeted 2.0 ACH50 (two air changes per hour at 50 pascals) as an ambitious maximum, but the team wanted to get much lower.  Our first blower door test achieved 1.6 ACH50, which is a terrific result.